
LikertMakeR vignette
Hume Winzar
April 2025
Source:vignettes/LikertMakeR_vignette.Rmd
LikertMakeR_vignette.Rmd
LikertMakeR (Winzar, 2022)
lets you create synthetic Likert-scale, or related rating-scale,
data.
Set the mean, standard deviation, and correlations, and the package
generates data matching those properties. It can also rearrange existing
data columns to achieve a desired correlation structure or generate data
based on Cronbach’s Alpha, factor correlations or
other summary statistics.
Purpose
The package should be useful for teaching in the Social Sciences, and for scholars who wish to “replicate” or “reverse engineer” rating-scale data for further analysis and visualisation when only summary statistics have been reported.
Motivation
I was prompted to write the functions in LikertMakeR after reviewing too many journal article submissions where authors presented questionnaire results with only means and standard deviations (often only the means), with no apparent understanding of scale distributions, and their impact on scale properties.
Hopefully, this tool will help researchers, teachers & students, and other reviewers, to better think about rating-scale distributions, and the effects of variance, scale boundaries, and number of items in a scale. Researchers can also use LikertMakeR to prepare analyses ahead of a formal survey.
Rating scale properties
A Likert scale is the mean, or sum, of several ordinal rating scales. Typically, they are bipolar (usually “agree-disagree”) responses to propositions that are determined to be moderately-to-highly correlated and that capture some facet of a theoretical construct.
Rating scales, such as Likert scales, are not continuous or unbounded.
For example, a 5-point Likert scale that is constructed with, say, five items (questions) will have a summed range of between 5 (all rated ‘1’) and 25 (all rated ‘5’) with all integers in between, and the mean range will be ‘1’ to ‘5’ with intervals of 1/5=0.20. A 7-point Likert scale constructed from eight items will have a summed range between 8 (all rated ‘1’) and 56 (all rated ‘7’) with all integers in between, and the mean range will be ‘1’ to ‘7’ with intervals of 1/8=0.125.
Technically, because they are bounded and not continuous, parametric statistics, such as mean, standard deviation, and correlation, should not be applied to summated rating scales. In practice, however, parametric statistics are commonly used in the social sciences because:
they are in common usage and easily understood,
results and conclusions drawn from technically-correct non-parametric statistics are (almost) always the same as for parametric statistics for such data.
For example, D’Alessandro et al. (2020) argue that a summated scale, made with multiple items, “approaches” an interval scale measure. This implies that parametric statistics are acceptable.
Rating-scale boundaries define minima and maxima for any scale
values. If the mean is close to one boundary then data points will
gather more closely to that boundary.
If the mean is not in the
middle of a scale, then the data will be always skewed, as shown in the
following plots.

Off-centre means always give skewed distribution in bounded rating scales
LikertMakeR functions
lfast() generate a vector of values with predefined mean and standard deviation.
lcor() takes a dataframe of rating-scale values and rearranges the values in each column so that the columns are correlated to match a predefined correlation matrix.
makeCorrAlpha constructs a random correlation matrix of given dimensions from a predefined Cronbach’s Alpha.
makeCorrLoadings constructs a random correlation matrix from a given factor loadings matrix, and factor-correlations matrix.
makeItems() is a wrapper function for lfast() and lcor() to generate synthetic rating-scale data with predefined first and second moments and a predefined correlation matrix.
makeItemsScale() generates a random dataframe of scale items based on a predefined summated scale with a desired Cronbach’s Alpha.
makePaired() generates a dataframe of two correlated columns based on summary data from a paired-sample t-test.
correlateScales() creates a dataframe of correlated summated scales as one might find in completed survey questionnaire and possibly used in a Structural Equation model.
-
Helper Functions
alpha() calculates Cronbach’s Alpha from a given correlation matrix or a given dataframe.
eigenvalues() calculates eigenvalues of a correlation matrix, reports on positive-definite status of the matrix and, optionally, displays a scree plot to visualise the eigenvalues.
Using LikertMakeR
Generate synthetic rating-scale data
lfast()
- lfast() applies a simple evolutionary algorithm which draws repeated random samples from a scaled Beta distribution. It produces a vector of values with mean and standard deviation typically correct to two decimal places.
To synthesise a rating scale with lfast(), the user must input the following parameters:
n: sample size
mean: desired mean
sd: desired standard deviation
lowerbound: desired lower bound
upperbound: desired upper bound
items: number of items making the scale - default = 1
An earlier version of LikertMakeR had a function, lexact(), which was slow and no more accurate than the latest version of lfast(). So, lexact() is now deprecated.
lfast() example
a four-item, five-point Likert scale
nItems <- 4
mean <- 2.5
sd <- 0.75
x1 <- lfast(
n = 512,
mean = mean,
sd = sd,
lowerbound = 1,
upperbound = 5,
items = nItems
)
#> best solution in 256 iterations

Example: 4-item, 1-5 Likert scale
an 11-point likelihood-of-purchase scale
lfast()
x2 <- lfast(256, 3, 2.5, 0, 10)
#> best solution in 7723 iterations

Example: likelihood-of-purchase scale
Correlating rating scales
The function, lcor(), rearranges the values in the columns of a data-set so that they are correlated at a specified level. It does not change the values - it swaps their positions within each column so that univariate statistics do not change, but their correlations with other vectors do.
lcor()
lcor() systematically selects pairs of values in a column and swaps their places, and checks to see if this swap improves the correlation matrix. If the revised dataframe produces a correlation matrix closer to the target correlation matrix, then the swap is retained. Otherwise, the values are returned to their original places. This process is iterated across each column.
To create the desired correlated data, the user must define the following parameters:
data: a starter data set of rating-scales. Number of columns must match the dimensions of the target correlation matrix.
target: the target correlation matrix.
lcor() example
Let’s generate some data: three 5-point Likert scales, each with five items.
## generate uncorrelated synthetic data
n <- 128
lowerbound <- 1
upperbound <- 5
items <- 5
mydat3 <- data.frame(
x1 = lfast(n, 2.5, 0.75, lowerbound, upperbound, items),
x2 = lfast(n, 3.0, 1.50, lowerbound, upperbound, items),
x3 = lfast(n, 3.5, 1.00, lowerbound, upperbound, items)
)
#> best solution in 812 iterations
#> best solution in 7553 iterations
#> best solution in 385 iterations
The first six observations from this dataframe are:
#> x1 x2 x3
#> 1 1.4 1.0 5.0
#> 2 2.8 5.0 4.2
#> 3 3.4 1.8 2.0
#> 4 2.0 4.8 4.4
#> 5 3.6 1.0 3.4
#> 6 2.2 2.8 4.0
And the first and second moments (to 3 decimal places) are:
#> x1 x2 x3
#> mean 2.500 3.002 3.498
#> sd 0.752 1.501 1.001
We can see that the data have first and second moments are very close to what is expected.
As we should expect, randomly-generated synthetic data have low correlations:
#> x1 x2 x3
#> x1 1.00 -0.02 0.03
#> x2 -0.02 1.00 0.00
#> x3 0.03 0.00 1.00
Now, let’s define a target correlation matrix:
## describe a target correlation matrix
tgt3 <- matrix(
c(
1.00, 0.85, 0.75,
0.85, 1.00, 0.65,
0.75, 0.65, 1.00
),
nrow = 3
)
So now we have a dataframe with desired first and second moments, and a target correlation matrix.
## apply lcor() function
new3 <- lcor(data = mydat3, target = tgt3)
Values in each column of the new dataframe do not change from the original; the values are rearranged.
The first ten observations from this dataframe are:
#> X1 X2 X3
#> 1 1.8 1.2 2.8
#> 2 3.4 5.0 4.2
#> 3 1.6 1.2 2.8
#> 4 3.2 4.8 4.8
#> 5 4.2 5.0 3.2
#> 6 2.6 2.8 4.8
#> 7 1.4 1.2 2.6
#> 8 2.0 1.8 3.0
#> 9 2.2 3.2 3.6
#> 10 3.0 3.4 3.6
And the new data frame is correlated close to our desired correlation matrix; here presented to 3 decimal places:
#> X1 X2 X3
#> X1 1.00 0.85 0.75
#> X2 0.85 1.00 0.65
#> X3 0.75 0.65 1.00
Generate a correlation matrix from Cronbach’s Alpha
makeCorrAlpha()
makeCorrAlpha(), constructs a random correlation matrix of given dimensions and predefined Cronbach’s Alpha.
To create the desired correlation matrix, the user must define the following parameters:
items: or “k” - the number of rows and columns of the desired correlation matrix.
alpha: the target value for Cronbach’s Alpha
variance: a notional variance coefficient to affect the spread of values in the correlation matrix. Default = ‘0.5’. A value of ‘0’ produces a matrix where all off-diagonal correlations are equal. Setting ‘variance = 1.0’ gives a wider range of values. Setting ‘variance = 2.0’, or above, may be feasible but increases the likelihood of a non-positive-definite matrix.
makeCorrAlpha() is volatile
Random values generated by makeCorrAlpha() are highly volatile. makeCorrAlpha() may not generate a feasible (positive-definite) correlation matrix, especially when
-
variance is high relative to
desired Alpha, and
desired correlation dimensions
makeCorrAlpha() will inform the user if the resulting correlation matrix is positive definite, or not.
If the returned correlation matrix is not positive-definite, a feasible solution may be still possible, and often is. The user is encouraged to try again, possibly several times, to find one.
makeCorrAlpha() examples
Four variables, alpha = 0.85, variance = default
## define parameters
items <- 4
alpha <- 0.85
# variance <- 0.5 ## by default
## apply makeCorrAlpha() function
set.seed(42)
cor_matrix_4 <- makeCorrAlpha(items, alpha)
#> correlation values consistent with desired alpha in 59 iterations
#> The correlation matrix is positive definite
makeCorrAlpha() produced the following correlation matrix (to three decimal places):
#> [,1] [,2] [,3] [,4]
#> [1,] 1.000 0.425 0.433 0.507
#> [2,] 0.425 1.000 0.693 0.694
#> [3,] 0.433 0.693 1.000 0.766
#> [4,] 0.507 0.694 0.766 1.000
test output with Helper functions
## using helper function alpha()
alpha(cor_matrix_4)
#> [1] 0.8500063
## using helper function eigenvalues()
eigenvalues(cor_matrix_4, 1)
#> cor_matrix_4 is positive-definite
#> [1] 2.7842025 0.6581071 0.3291732 0.2285172
twelve variables, alpha = 0.90, variance = 1
## define parameters
items <- 12
alpha <- 0.90
variance <- 1.0
## apply makeCorrAlpha() function
set.seed(42)
cor_matrix_12 <- makeCorrAlpha(items = items, alpha = alpha, variance = variance)
#> correlation values consistent with desired alpha in 4312 iterations
#> Correlation matrix is not yet positive definite
#>
#> Working on it
#>
#> improved at swap - 12
#> improved at swap - 67
#> improved at swap - 79
#> improved at swap - 80
#> improved at swap - 115
#> improved at swap - 121
#> improved at swap - 128
#> improved at swap - 130
#> improved at swap - 134
#> improved at swap - 137
#> improved at swap - 146
#> improved at swap - 151
#> improved at swap - 160
#> improved at swap - 162
#> improved at swap - 166
#> improved at swap - 174
#> improved at swap - 183
#> improved at swap - 188
#> improved at swap - 191
#> improved at swap - 208
#> improved at swap - 263
#> improved at swap - 304
#> improved at swap - 399
#> improved at swap - 400
#> improved at swap - 402
#> improved at swap - 445
#> improved at swap - 485
#> improved at swap - 542
#> stopped at swap - 542
#> The correlation matrix is positive definite
-
makeCorrAlpha() produced the following correlation matrix (to two decimal places):
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
#> [1,] 1.00 -0.51 -0.67 -0.32 -0.30 -0.29 -0.27 -0.14 -0.07 -0.04 -0.03 0.00
#> [2,] -0.51 1.00 0.06 0.31 0.43 0.26 0.28 0.20 0.26 0.06 0.25 0.34
#> [3,] -0.67 0.06 1.00 0.61 0.36 0.62 0.57 0.47 0.45 0.46 0.47 0.33
#> [4,] -0.32 0.31 0.61 1.00 0.48 0.50 0.60 0.36 0.39 0.53 0.64 0.59
#> [5,] -0.30 0.43 0.36 0.48 1.00 0.42 0.56 0.62 0.62 0.62 0.56 0.63
#> [6,] -0.29 0.26 0.62 0.50 0.42 1.00 0.81 0.66 0.70 0.70 0.70 0.70
#> [7,] -0.27 0.28 0.57 0.60 0.56 0.81 1.00 0.57 0.71 0.72 0.72 0.73
#> [8,] -0.14 0.20 0.47 0.36 0.62 0.66 0.57 1.00 0.71 0.79 0.79 0.78
#> [9,] -0.07 0.26 0.45 0.39 0.62 0.70 0.71 0.71 1.00 0.80 0.83 0.84
#> [10,] -0.04 0.06 0.46 0.53 0.62 0.70 0.72 0.79 0.80 1.00 0.88 0.89
#> [11,] -0.03 0.25 0.47 0.64 0.56 0.70 0.72 0.79 0.83 0.88 1.00 0.97
#> [12,] 0.00 0.34 0.33 0.59 0.63 0.70 0.73 0.78 0.84 0.89 0.97 1.00
test output
## calculate Cronbach's Alpha
alpha(cor_matrix_12)
#> [1] 0.9000045
## calculate eigenvalues of the correlation matrix
eigenvalues(cor_matrix_12, 1) |> round(3)
#> cor_matrix_12 is positive-definite
#> [1] 6.964 1.743 1.087 0.658 0.567 0.377 0.254 0.159 0.127 0.051 0.014 0.001
Generate a correlation matrix from factor loadings
makeCorrLoadings
makeCorrLoadings() generates a correlation matrix from factor loadings and factor correlations as might be seen in Exploratory Factor Analysis (EFA) or a Structural Equation Model (SEM).
makeCorrLoadings() usage
makeCorrLoadings(loadings, factorCor = NULL, uniquenesses = NULL, nearPD = FALSE)
makeCorrLoadings() arguments
loadings: ‘k’ (items) by ‘f’ (factors) matrix of standardised factor loadings. Item names and Factor names can be taken from the row_names (items) and the column_names (factors), if present.
factorCor: ‘f’ x ‘f’ factor correlation matrix. If not present, then we assume that the factors are uncorrelated (orthogonal), which is rare in practice, and the function applies an identity matrix for factor_cor.
uniquenesses: length ‘k’ vector of uniquenesses. If NULL, the default, compute from the calculated communalities.
nearPD: (logical) If TRUE, then the function calls the nearPD function from the Matrix package to transform the resulting correlation matrix onto the nearest Positive Definite matrix. Obviously, this only applies if the resulting correlation matrix is not positive definite. (It should never be needed.)
Note
“Censored” loadings (for example, where loadings less than some small
value (often ‘0.30’), are removed for ease-of-communication) tend to
severely reduce the accuracy of the makeCorrLoadings()
function. For a detailed demonstration, see the vignette file,
makeCorrLoadings_Validate.
makeCorrLoadings() examples
Typical application from published EFA results
define parameters
## Example loadings
factorLoadings <- matrix(
c(
0.05, 0.20, 0.70,
0.10, 0.05, 0.80,
0.05, 0.15, 0.85,
0.20, 0.85, 0.15,
0.05, 0.85, 0.10,
0.10, 0.90, 0.05,
0.90, 0.15, 0.05,
0.80, 0.10, 0.10
),
nrow = 8, ncol = 3, byrow = TRUE
)
## row and column names
rownames(factorLoadings) <- c("Q1", "Q2", "Q3", "Q4", "Q5", "Q6", "Q7", "Q8")
colnames(factorLoadings) <- c("Factor1", "Factor2", "Factor3")
## Factor correlation matrix**
factorCor <- matrix(
c(
1.0, 0.5, 0.4,
0.5, 1.0, 0.3,
0.4, 0.3, 1.0
),
nrow = 3, byrow = TRUE
)
Apply the function
## apply makeCorrLoadings() function
itemCorrelations <- makeCorrLoadings(factorLoadings, factorCor)
## derived correlation matrix to two decimal places
round(itemCorrelations, 2)
#> Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
#> Q1 1.00 0.62 0.67 0.48 0.42 0.42 0.43 0.41
#> Q2 0.62 1.00 0.72 0.43 0.36 0.36 0.44 0.42
#> Q3 0.67 0.72 1.00 0.50 0.43 0.43 0.46 0.45
#> Q4 0.48 0.43 0.50 1.00 0.79 0.83 0.65 0.58
#> Q5 0.42 0.36 0.43 0.79 1.00 0.80 0.54 0.48
#> Q6 0.42 0.36 0.43 0.83 0.80 1.00 0.59 0.52
#> Q7 0.43 0.44 0.46 0.65 0.54 0.59 1.00 0.78
#> Q8 0.41 0.42 0.45 0.58 0.48 0.52 0.78 1.00
Test makeCorrLoadings() output
## correlated factors mean that eigenvalues should suggest two or three factors
eigenvalues(cormatrix = itemCorrelations, scree = TRUE)
#> itemCorrelations is positive-definite
#> [1] 4.7679427 1.2254239 0.7641967 0.3799863 0.2668158 0.2237851 0.2073574
#> [8] 0.1644922
Assuming orthogonal factors
## orthogonal factors are assumed when factor correlation matrix is not included
orthogonalItemCors <- makeCorrLoadings(factorLoadings)
## derived correlation matrix to two decimal places
round(orthogonalItemCors, 2)
#> Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8
#> Q1 1.00 0.58 0.63 0.29 0.24 0.22 0.11 0.13
#> Q2 0.58 1.00 0.69 0.18 0.13 0.10 0.14 0.17
#> Q3 0.63 0.69 1.00 0.26 0.22 0.18 0.11 0.14
#> Q4 0.29 0.18 0.26 1.00 0.75 0.79 0.32 0.26
#> Q5 0.24 0.13 0.22 0.75 1.00 0.78 0.18 0.14
#> Q6 0.22 0.10 0.18 0.79 0.78 1.00 0.23 0.18
#> Q7 0.11 0.14 0.11 0.32 0.18 0.23 1.00 0.74
#> Q8 0.13 0.17 0.14 0.26 0.14 0.18 0.74 1.00
Test orthogonal output
## eigenvalues should suggest exactly three factors
eigenvalues(cormatrix = orthogonalItemCors, scree = TRUE)
#> orthogonalItemCors is positive-definite
#> [1] 3.2769426 1.8091128 1.4966064 0.4244753 0.2966222 0.2605233 0.2402622
#> [8] 0.1954553
Generate a dataframe of rating scales from a correlation matrix and predefined moments
makeItems()
makeItems() generates a dataframe of random discrete values from a scaled Beta distribution so the data replicate a rating scale, and are correlated close to a predefined correlation matrix.
Generally, means, standard deviations, and correlations are correct to two decimal places.
makeItems() is a wrapper function for
lfast(), which takes repeated samples selecting a vector that best fits the desired moments, and
lcor(), which rearranges values in each column of the dataframe so they closely match the desired correlation matrix.
To create the desired dataframe, the user must define the following parameters:
n: number of observations
dfMeans: a vector of length ‘k’ of desired means of each variable
dfSds: a vector of length ‘k’ of desired standard deviations of each variable
lowerbound: a vector of length ‘k’ of values for the lower bound of each variable (For example, ‘1’ for a 1-5 rating scale)
upperbound: a vector of length ‘k’ of values for the upper bound of each variable (For example, ‘5’ for a 1-5 rating scale)
cormatrix: a target correlation matrix with ‘k’ rows and ‘k’ columns.
makeItems() examples
## define parameters
n <- 128
dfMeans <- c(2.5, 3.0, 3.0, 3.5)
dfSds <- c(1.0, 1.0, 1.5, 0.75)
lowerbound <- rep(1, 4)
upperbound <- rep(5, 4)
corMat <- matrix(
c(
1.00, 0.25, 0.35, 0.45,
0.25, 1.00, 0.70, 0.75,
0.35, 0.70, 1.00, 0.85,
0.45, 0.75, 0.85, 1.00
),
nrow = 4, ncol = 4
)
## apply makeItems() function
df <- makeItems(
n = n,
means = dfMeans,
sds = dfSds,
lowerbound = lowerbound,
upperbound = upperbound,
cormatrix = corMat
)
#> Variable 1
#> reached maximum of 16384 iterations
#> Variable 2
#> reached maximum of 16384 iterations
#> Variable 3
#> best solution in 2371 iterations
#> Variable 4
#> reached maximum of 16384 iterations
#>
#> Arranging data to match correlations
#>
#> Successfully generated correlated variables
## test the function
head(df)
#>
#> 1 3 4 5 5
#> 2 2 3 3 3
#> 3 3 4 3 4
#> 4 4 3 5 4
#> 5 3 3 3 4
#> 6 3 4 5 4
tail(df)
#>
#> 123 1 3 3 3
#> 124 3 3 2 3
#> 125 2 3 3 3
#> 126 3 4 1 3
#> 127 3 2 1 3
#> 128 2 3 2 3
### means should be correct to two decimal places
dfmoments <- data.frame(
mean = apply(df, 2, mean) |> round(3),
sd = apply(df, 2, sd) |> round(3)
) |> t()
dfmoments
#> [,1] [,2] [,3] [,4]
#> mean 2.500 3.000 3.000 3.500
#> sd 1.004 1.004 1.501 0.753
### correlations should be correct to two decimal places
cor(df) |> round(3)
#> [,1] [,2] [,3] [,4]
#> [1,] 1.000 0.25 0.350 0.448
#> [2,] 0.250 1.00 0.700 0.740
#> [3,] 0.350 0.70 1.000 0.836
#> [4,] 0.448 0.74 0.836 1.000
Generate a dataframe from Cronbach’s Alpha and predefined moments
This is a two-step process:
apply makeCorrAlpha() to generate a correlation matrix from desired alpha,
apply makeItems() to generate rating-scale items from the correlation matrix and desired moments
Required parameters are:
k: number items/ columns
alpha: a target Cronbach’s Alpha.
n: number of observations
lowerbound: a vector of length ‘k’ of values for the lower bound of each variable
upperbound: a vector of length ‘k’ of values for the upper bound of each variable
means: a vector of length ‘k’ of desired means of each variable
sds: a vector of length ‘k’ of desired standard deviations of each variable
Step 1: Generate a correlation matrix
## define parameters
k <- 6
myAlpha <- 0.85
## generate correlation matrix
set.seed(42)
myCorr <- makeCorrAlpha(items = k, alpha = myAlpha)
#> correlation values consistent with desired alpha in 15193 iterations
#> The correlation matrix is positive definite
## display correlation matrix
myCorr |> round(3)
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 1.000 -0.153 0.116 0.430 0.438 0.473
#> [2,] -0.153 1.000 0.480 0.498 0.528 0.585
#> [3,] 0.116 0.480 1.000 0.602 0.625 0.641
#> [4,] 0.430 0.498 0.602 1.000 0.662 0.677
#> [5,] 0.438 0.528 0.625 0.662 1.000 0.684
#> [6,] 0.473 0.585 0.641 0.677 0.684 1.000
### checking Cronbach's Alpha
alpha(cormatrix = myCorr)
#> [1] 0.8500101
Step 2: Generate dataframe
## define parameters
n <- 256
myMeans <- c(2.75, 3.00, 3.00, 3.25, 3.50, 3.5)
mySds <- c(1.00, 0.75, 1.00, 1.00, 1.00, 1.5)
lowerbound <- rep(1, k)
upperbound <- rep(5, k)
## Generate Items
myItems <- makeItems(
n = n, means = myMeans, sds = mySds,
lowerbound = lowerbound, upperbound = upperbound,
cormatrix = myCorr
)
#> Variable 1
#> best solution in 972 iterations
#> Variable 2
#> best solution in 17 iterations
#> Variable 3
#> best solution in 973 iterations
#> Variable 4
#> best solution in 4866 iterations
#> Variable 5
#> best solution in 336 iterations
#> Variable 6
#> best solution in 16769 iterations
#>
#> Arranging data to match correlations
#>
#> Successfully generated correlated variables
## resulting data frame
head(myItems)
#>
#> 1 4 3 2 4 3 5
#> 2 3 2 2 2 3 1
#> 3 2 4 2 3 3 4
#> 4 2 3 4 3 3 3
#> 5 4 3 4 4 4 5
#> 6 4 2 1 3 3 1
tail(myItems)
#>
#> 251 2 2 2 3 2 1
#> 252 4 2 2 3 3 2
#> 253 3 3 2 3 3 4
#> 254 3 2 4 4 4 4
#> 255 3 4 3 4 4 5
#> 256 2 2 2 1 2 2
## means and standard deviations
myMoments <- data.frame(
means = apply(myItems, 2, mean) |> round(3),
sds = apply(myItems, 2, sd) |> round(3)
) |> t()
myMoments
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> means 2.750 3.000 3.000 3.250 3.500 3.500
#> sds 0.998 0.751 1.002 0.998 0.998 1.498
## Cronbach's Alpha of data frame
alpha(NULL, myItems)
#> [1] 0.8499588
Generate a dataframe of rating-scale items from a summated rating scale
makeItemsScale()
- makeItemsScale() generates a dataframe of rating-scale items from a summated rating scale and desired Cronbach’s Alpha.
To create the desired dataframe, the user must define the following parameters:
scale: a vector or dataframe of the summated rating scale. Should range from (‘lowerbound’ * ‘items’) to (‘upperbound’ * ‘items’)
lowerbound: lower bound of the scale item (example: ‘1’ in a ‘1’ to ‘5’ rating)
upperbound: upper bound of the scale item (example: ‘5’ in a ‘1’ to ‘5’ rating)
items: k, or number of columns to generate
alpha: desired Cronbach’s Alpha. Default = ‘0.8’
variance: quantile for selecting the combination of items that give summated scores. Must lie between ‘0’ (minimum variance) and ‘1’ (maximum variance). Default = ‘0.5’.
makeItemsScale() Example:
generate a summated scale
## define parameters
n <- 256
mean <- 3.00
sd <- 0.85
lowerbound <- 1
upperbound <- 5
items <- 4
## apply lfast() function
meanScale <- lfast(
n = n, mean = mean, sd = sd,
lowerbound = lowerbound, upperbound = upperbound,
items = items
)
#> best solution in 900 iterations
## sum over all items
summatedScale <- meanScale * items

Summated scale distribution
create items with makeItemsScale()
## apply makeItemsScale() function
newItems_1 <- makeItemsScale(
scale = summatedScale,
lowerbound = lowerbound,
upperbound = upperbound,
items = items
)
#> generate 256 rows
#> rearrange 4 values within each of 256 rows
#> Complete!
#> desired Cronbach's alpha = 0.8 (achieved alpha = 0.8004)
### First 10 observations and summated scale
head(cbind(newItems_1, summatedScale), 10)
#> V1 V2 V3 V4 summatedScale
#> 1 4 1 1 3 9
#> 2 2 2 2 2 8
#> 3 5 1 2 4 12
#> 4 5 4 4 4 17
#> 5 5 2 3 3 13
#> 6 5 5 5 4 19
#> 7 4 1 2 4 11
#> 8 5 4 4 5 18
#> 9 5 3 4 5 17
#> 10 4 1 4 3 12
### correlation matrix
cor(newItems_1) |> round(2)
#> V1 V2 V3 V4
#> V1 1.00 0.56 0.61 0.51
#> V2 0.56 1.00 0.60 0.33
#> V3 0.61 0.60 1.00 0.39
#> V4 0.51 0.33 0.39 1.00
### default Cronbach's alpha = 0.80
alpha(data = newItems_1) |> round(4)
#> [1] 0.8004
### calculate eigenvalues and print scree plot
eigenvalues(cor(newItems_1), 1) |> round(3)
#> cor(newItems_1) is positive-definite
#> [1] 2.517 0.717 0.403 0.364
makeItemsScale() with same summated values and higher alpha
## apply makeItemsScale() function
newItems_2 <- makeItemsScale(
scale = summatedScale,
lowerbound = lowerbound,
upperbound = upperbound,
items = items,
alpha = 0.9
)
#> generate 256 rows
#> rearrange 4 values within each of 256 rows
#> Complete!
#> desired Cronbach's alpha = 0.9 (achieved alpha = 0.8778)
### First 10 observations and summated scale
head(cbind(newItems_2, summatedScale), 10)
#> V1 V2 V3 V4 summatedScale
#> 1 4 1 2 2 9
#> 2 3 1 2 2 8
#> 3 3 3 3 3 12
#> 4 5 3 5 4 17
#> 5 4 2 4 3 13
#> 6 5 4 5 5 19
#> 7 4 1 4 2 11
#> 8 5 4 5 4 18
#> 9 5 4 4 4 17
#> 10 4 1 4 3 12
### correlation matrix
cor(newItems_2) |> round(2)
#> V1 V2 V3 V4
#> V1 1.00 0.58 0.68 0.64
#> V2 0.58 1.00 0.58 0.66
#> V3 0.68 0.58 1.00 0.73
#> V4 0.64 0.66 0.73 1.00
### requested Cronbach's alpha = 0.90
alpha(data = newItems_2) |> round(4)
#> [1] 0.8778
### calculate eigenvalues and print scree plot
eigenvalues(cor(newItems_2), 1) |> round(3)
#> cor(newItems_2) is positive-definite
#> [1] 2.929 0.457 0.366 0.248
same summated values with lower alpha that may require higher variance
## apply makeItemsScale() function
newItems_3 <- makeItemsScale(
scale = summatedScale,
lowerbound = lowerbound,
upperbound = upperbound,
items = items,
alpha = 0.6,
variance = 0.7
)
#> generate 256 rows
#> rearrange 4 values within each of 256 rows
#> Complete!
#> desired Cronbach's alpha = 0.6 (achieved alpha = 0.5989)
### First 10 observations and summated scale
head(cbind(newItems_3, summatedScale), 10)
#> V1 V2 V3 V4 summatedScale
#> 1 1 1 3 4 9
#> 2 1 4 2 1 8
#> 3 2 4 4 2 12
#> 4 3 5 4 5 17
#> 5 2 5 2 4 13
#> 6 4 5 5 5 19
#> 7 1 4 3 3 11
#> 8 5 5 5 3 18
#> 9 4 5 5 3 17
#> 10 2 3 2 5 12
### correlation matrix
cor(newItems_3) |> round(2)
#> V1 V2 V3 V4
#> V1 1.00 0.45 0.45 0.09
#> V2 0.45 1.00 0.25 0.17
#> V3 0.45 0.25 1.00 0.22
#> V4 0.09 0.17 0.22 1.00
### requested Cronbach's alpha = 0.70
alpha(data = newItems_3) |> round(4)
#> [1] 0.5989
### calculate eigenvalues and print scree plot
eigenvalues(cor(newItems_3), 1) |> round(3)
#> cor(newItems_3) is positive-definite
#> [1] 1.862 0.946 0.742 0.450
Create a dataframe for a t-test
Generating a data for an independent-samples t-test is trivial with LikertMakeR. But a dataframe for a paired-sample t-test is tricky because the observations are related to each other. That is, we must generate a dataframe of correlated observations.
Independent-samples t-test
Note that such tests don’t even require the same sample-size.
## define parameters
lower <- 1
upper <- 5
items <- 6
## generate two independent samples
x1 <- lfast(
n = 20, mean = 2.5, sd = 0.75,
lowerbound = lower, upperbound = upper, items = items
)
#> reached maximum of 1024 iterations
x2 <- lfast(
n = 30, mean = 3.0, sd = 0.85,
lowerbound = lower, upperbound = upper, items = items
)
#> reached maximum of 1024 iterations
## run independent-samples t-test
t.test(x1, x2)
#>
#> Welch Two Sample t-test
#>
#> data: x1 and x2
#> t = -2.1599, df = 44.101, p-value = 0.03626
#> alternative hypothesis: true difference in means is not equal to 0
#> 95 percent confidence interval:
#> -0.95576930 -0.03311959
#> sample estimates:
#> mean of x mean of y
#> 2.500000 2.994444
makePaired() paired-sample t-test
makePaired() generates correlated values so the data replicate rating scales taken, for example, in a before and after experimental design. The function is effectively a wrapper function for lfast() and lcor() with the addition of a t-statistic from which the between-column correlation is inferred.
Paired t-tests apply to observations that are associated with each other. For example: the same people rating the same object before and after a treatment, the same people rating two different objects, ratings by husband & wife, etc.
makePaired() has similar parameters as for the lfast() function with the addition of a value for the desired t-statistic.
n sample size
means a [1:2] vector of target means for two before/after measures
sds a [1:2] vector of target standard deviations
t_value desired paired t-statistic
lowerbound lower bound (e.g. ‘1’ for a 1-5 rating scale)
upperbound upper bound (e.g. ‘5’ for a 1-5 rating scale)
items number of items in the rating scale.
precision can relax the level of accuracy required, as in lfast().
makePaired() examples
## define parameters
n <- 20
means <- c(2.5, 3.0)
sds <- c(0.75, 0.85)
lower <- 1
upper <- 5
items <- 6
t <- -2.5
## run the function
pairedDat <- makePaired(
n = n, means = means, sds = sds,
t_value = t,
lowerbound = lower, upperbound = upper, items = items
)
#> Initial data vectors
#> reached maximum of 1024 iterations
#> reached maximum of 1024 iterations
#> Rearrange values to conform with desired t-value
#> Complete!
check properties of new data
## test function output
str(pairedDat)
#> 'data.frame': 20 obs. of 2 variables:
#> $ X1: num 3.17 3.5 3.67 3.17 1.33 ...
#> $ X2: num 3.5 3.5 2.67 1.67 2.17 ...
cor(pairedDat) |> round(2)
#> X1 X2
#> X1 1.00 0.38
#> X2 0.38 1.00
pairedMoments <- data.frame(
mean = apply(pairedDat, MARGIN = 2, FUN = mean) |> round(3),
sd = apply(pairedDat, MARGIN = 2, FUN = sd) |> round(3)
) |> t()
pairedMoments
#> X1 X2
#> mean 2.500 2.992
#> sd 0.759 0.851
run a paired-sample t-test with the new data
## run a paired-sample t-test
paired_t <- t.test(x = pairedDat$X1, y = pairedDat$X2, paired = TRUE)
# paired_t <- t.test(pairedDat$X1, pairedDat$X2, paired = TRUE)
paired_t
#>
#> Paired t-test
#>
#> data: pairedDat$X1 and pairedDat$X2
#> t = -2.4455, df = 19, p-value = 0.02438
#> alternative hypothesis: true mean difference is not equal to 0
#> 95 percent confidence interval:
#> -0.91246509 -0.07086825
#> sample estimates:
#> mean difference
#> -0.4916667
Create a dataframe for Repeated-Measures ANOVA
makeRepeated()
makeRepeated() Reconstructs a synthetic dataset and inter-timepoint correlation matrix from a repeated-measures ANOVA result, based on reported means, standard deviations, and an F-statistic.
This function estimates the average correlation between repeated measures by matching the reported F-statistic, under one of three assumed correlation structures:
"cs"
(Compound Symmetry): Compound Symmetry assumes that all repeated measures are equally correlated with each other. That is, the correlation between time 1 and time 2 is the same as between time 1 and time 3, and so on. This structure is commonly used in repeated-measures ANOVA by default. It’s mathematically simple and reflects the idea that all timepoints are equally related. However, it may not be realistic for data where correlations decrease as time intervals increase (e.g., memory decay or learning effects). Use this if you assume stable relationships between all repeated measures."ar1"
(First-Order Autoregressive): first-order autoregressive, assumes that measurements closer together in time are more highly correlated than those further apart. For example, the correlation between time 1 and time 2 is stronger than between time 1 and time 3. This pattern is often realistic in longitudinal or time-series studies where change is gradual. The correlation drops off exponentially with each time step. Use this structure if you believe the relationship between repeated measures weakens steadily over time."toeplitz"
(Linearly Decreasing): Toeplitz structure is a more flexible option that allows the correlation between measurements to decrease linearly as the time gap increases. Unlike AR(1), where the decline is exponential, the Toeplitz structure assumes a straight-line drop in correlation — a gentle fade over time. This may be useful in studies where changes across time are more gradual or irregular, but not strictly exponential. It’s a good middle ground when neither compound symmetry nor AR(1) seems quite right.
makeRepeated() usage
makeRepeated(
n,
k,
means,
sds,
f_stat,
df_between = k - 1,
df_within = (n - 1) * (k - 1),
structure = c("cs", "ar1", "toeplitz"),
names = paste0("time_", 1:k),
items = 1,
lowerbound = 1, upperbound = 5,
return_corr_only = FALSE,
diagnostics = FALSE,
...
)
makeRepeated() arguments
- n Integer. Sample size used in the original study.
- k Integer. Number of repeated measures (timepoints).
- means Numeric vector of length . Mean values reported for each timepoint.
- sds Numeric vector of length . Standard deviations reported for each timepoint.
- f_stat Numeric. The reported repeated-measures ANOVA F-statistic for the within-subjects factor.
- df_between, Degrees of freedom between conditions (default: ).
- df_within, Degrees of freedom within-subjects (default: ).
-
structure Character. Correlation structure
to assume:
"cs"
,"ar1"
, or"toeplitz"
(default). -
names Character vector of length .
Variable names for each timepoint (default:
"time_1"
to"time_k"
). - items Integer. Number of items used to generate each scale score (passed to ).
- lowerbound, Integer. Lower bounds for Likert-type response scales (default: 1).
- upperbound, Integer. upper bounds for Likert-type response scales (default: 5).
- return_corr_only Logical. If , return only the estimated correlation matrix.
- diagnostics Logical. If , include diagnostic summaries such as feasible F-statistic range and effect sizes.
makeRepeated() examples
out1 <- makeRepeated(
n = 128,
k = 3,
means = c(3.1, 3.5, 3.9),
sds = c(1.0, 1.1, 1.0),
items = 4,
f_stat = 4.87,
structure = "cs",
diagnostics = FALSE
)
#> Warning in makeRepeated(n = 128, k = 3, means = c(3.1, 3.5, 3.9), sds = c(1, :
#> Optimization may not have converged. Check results carefully.
#> best solution in 1114 iterations
#> best solution in 661 iterations
#> best solution in 1021 iterations
head(out1$data)
#> time_1 time_2 time_3
#> 1 1.50 4.25 5.00
#> 2 3.25 2.25 4.75
#> 3 4.50 2.25 4.00
#> 4 3.50 2.00 5.00
#> 5 3.75 4.25 3.00
#> 6 3.75 2.50 4.25
out1$correlation_matrix
#> time_1 time_2 time_3
#> time_1 1.0000000 -0.4899454 -0.4899454
#> time_2 -0.4899454 1.0000000 -0.4899454
#> time_3 -0.4899454 -0.4899454 1.0000000
out2 <- makeRepeated(
n = 32, k = 4,
means = c(2.75, 3.5, 4.0, 4.4),
sds = c(0.8, 1.0, 1.2, 1.0),
f_stat = 16,
structure = "ar1",
items = 5,
lowerbound = 1, upperbound = 7,
return_corr_only = FALSE,
diagnostics = TRUE
)
#> best solution in 110 iterations
#> best solution in 673 iterations
#> best solution in 336 iterations
#> reached maximum of 1024 iterations
print(out2)
#> $data
#> time_1 time_2 time_3 time_4
#> 1 1.8 1.8 3.2 5.0
#> 2 1.8 1.6 2.8 5.0
#> 3 3.0 3.2 2.4 4.2
#> 4 3.2 3.4 4.0 5.0
#> 5 1.6 2.0 2.2 4.0
#> 6 3.4 4.2 4.4 2.6
#> 7 3.0 4.0 3.8 5.0
#> 8 3.6 4.6 4.8 4.8
#> 9 2.4 3.8 1.4 5.0
#> 10 2.2 3.0 2.0 2.8
#> 11 2.4 2.8 5.0 6.2
#> 12 3.0 3.8 3.8 5.8
#> 13 1.4 4.0 5.4 4.0
#> 14 2.4 5.8 5.4 5.0
#> 15 2.0 3.2 4.0 2.0
#> 16 4.4 4.6 6.0 5.6
#> 17 2.8 2.4 4.8 5.2
#> 18 2.6 4.0 4.6 5.6
#> 19 2.0 4.0 6.0 5.2
#> 20 3.0 2.4 4.8 4.0
#> 21 2.6 3.8 5.2 4.8
#> 22 1.4 2.6 3.8 4.4
#> 23 3.6 3.2 4.6 4.6
#> 24 4.0 5.6 4.0 5.0
#> 25 3.0 3.2 4.8 4.2
#> 26 2.2 3.4 3.0 3.0
#> 27 2.0 3.6 3.4 4.0
#> 28 3.4 4.6 2.4 3.2
#> 29 4.4 3.0 3.0 3.6
#> 30 3.4 2.2 3.0 3.0
#> 31 3.0 4.4 5.2 5.0
#> 32 3.0 3.8 4.8 4.2
#>
#> $correlation_matrix
#> time_1 time_2 time_3 time_4
#> time_1 1.00000000 0.3910032 0.1528835 0.05977794
#> time_2 0.39100319 1.0000000 0.3910032 0.15288350
#> time_3 0.15288350 0.3910032 1.0000000 0.39100319
#> time_4 0.05977794 0.1528835 0.3910032 1.00000000
#>
#> $structure
#> [1] "ar1"
#>
#> $feasible_f_range
#> min max
#> 9.353034 39.481390
#>
#> $recommended_f
#> $recommended_f$conservative
#> [1] 10.21
#>
#> $recommended_f$moderate
#> [1] 11.91
#>
#> $recommended_f$strong
#> [1] 30.29
#>
#>
#> $achieved_f
#> [1] 15.99983
#>
#> $effect_size_raw
#> [1] 0.3792188
#>
#> $effect_size_standardised
#> [1] 0.3717831
out3 <- makeRepeated(
n = 32, k = 4,
means = c(2.0, 2.5, 3.0, 2.8),
sds = c(0.8, 0.9, 1.0, 0.9),
items = 4,
f_stat = 24,
structure = "toeplitz",
diagnostics = TRUE
)
#> Warning in makeRepeated(n = 32, k = 4, means = c(2, 2.5, 3, 2.8), sds = c(0.8,
#> : Optimization may not have converged. Check results carefully.
#> reached maximum of 1024 iterations
#> best solution in 721 iterations
#> reached maximum of 1024 iterations
#> reached maximum of 1024 iterations
str(out3)
#> List of 8
#> $ data :'data.frame': 32 obs. of 4 variables:
#> ..$ time_1: num [1:32] 3.25 1.75 3.25 1.75 1 2.5 1.5 1 2.5 1 ...
#> ..$ time_2: num [1:32] 2.75 2.5 4.25 2 1.25 2.25 1.5 1.5 3 1.5 ...
#> ..$ time_3: num [1:32] 2 1.75 4.75 3.25 3 1.5 2 4 3.25 2.5 ...
#> ..$ time_4: num [1:32] 2.25 1.75 4 2.75 3.75 1.75 1.5 3.75 1.5 2 ...
#> $ correlation_matrix : num [1:4, 1:4] 1 0.66 0.33 0 0.66 ...
#> ..- attr(*, "dimnames")=List of 2
#> .. ..$ : chr [1:4] "time_1" "time_2" "time_3" "time_4"
#> .. ..$ : chr [1:4] "time_1" "time_2" "time_3" "time_4"
#> $ structure : chr "toeplitz"
#> $ feasible_f_range : Named num [1:2] 5.57 8.64
#> ..- attr(*, "names")= chr [1:2] "min" "max"
#> $ recommended_f :List of 3
#> ..$ conservative: num 5.59
#> ..$ moderate : num 5.62
#> ..$ strong : num 7.64
#> $ achieved_f : num 9.95
#> $ effect_size_raw : num 0.142
#> $ effect_size_standardised: num 0.174
Create a multidimensional dataframe of correlated scale items
correlateScales()
Correlated rating-scale items generally are summed or averaged to create a measure of an “unobservable”, or “latent”, construct.
correlateScales() takes several such dataframes of rating-scale items and rearranges their rows so that the scales are correlated according to a predefined correlation matrix. Univariate statistics for each dataframe of rating-scale items do not change, but their correlations with rating-scale items in other dataframes do.
To run correlateScales(), parameters are:
dataframes: a list of ‘k’ dataframes to be rearranged and combined
scalecors: target correlation matrix - should be a symmetric k*k positive-semi-definite matrix, where ‘k’ is the number of dataframes
As with other functions in LikertMakeR, correlateScales() focuses on item and scale moments (mean and standard deviation) rather than on covariance structure. If you wish to simulate data for teaching or experimenting with Structural Equation modelling, then I recommend the sim.item() and sim.congeneric() functions from the psych package
correlateScales() examples
three attitudes and a behavioural intention
create dataframes of Likert-scale items
n <- 128
lower <- 1
upper <- 5
### attitude #1
#### generate a correlation matrix
cor_1 <- makeCorrAlpha(items = 4, alpha = 0.80)
#> correlation values consistent with desired alpha in 14116 iterations
#> The correlation matrix is positive definite
#### specify moments as vectors
means_1 <- c(2.5, 2.5, 3.0, 3.5)
sds_1 <- c(0.75, 0.85, 0.85, 0.75)
#### apply makeItems() function
Att_1 <- makeItems(
n = n, means = means_1, sds = sds_1,
lowerbound = rep(lower, 4), upperbound = rep(upper, 4),
cormatrix = cor_1
)
#> Variable 1
#> reached maximum of 16384 iterations
#> Variable 2
#> best solution in 1070 iterations
#> Variable 3
#> best solution in 68 iterations
#> Variable 4
#> reached maximum of 16384 iterations
#>
#> Arranging data to match correlations
#>
#> Successfully generated correlated variables
### attitude #2
#### generate a correlation matrix
cor_2 <- makeCorrAlpha(items = 5, alpha = 0.85)
#> correlation values consistent with desired alpha in 22469 iterations
#> The correlation matrix is positive definite
#### specify moments as vectors
means_2 <- c(2.5, 2.5, 3.0, 3.0, 3.5)
sds_2 <- c(0.75, 0.85, 0.75, 0.85, 0.75)
#### apply makeItems() function
Att_2 <- makeItems(
n, means_2, sds_2,
rep(lower, 5), rep(upper, 5),
cor_2
)
#> Variable 1
#> reached maximum of 16384 iterations
#> Variable 2
#> best solution in 106 iterations
#> Variable 3
#> reached maximum of 16384 iterations
#> Variable 4
#> best solution in 290 iterations
#> Variable 5
#> reached maximum of 16384 iterations
#>
#> Arranging data to match correlations
#>
#> Successfully generated correlated variables
### attitude #3
#### generate a correlation matrix
cor_3 <- makeCorrAlpha(items = 6, alpha = 0.90)
#> correlation values consistent with desired alpha in 603 iterations
#> The correlation matrix is positive definite
#### specify moments as vectors
means_3 <- c(2.5, 2.5, 3.0, 3.0, 3.5, 3.5)
sds_3 <- c(0.75, 0.85, 0.85, 1.0, 0.75, 0.85)
#### apply makeItems() function
Att_3 <- makeItems(
n, means_3, sds_3,
rep(lower, 6), rep(upper, 6),
cor_3
)
#> Variable 1
#> reached maximum of 16384 iterations
#> Variable 2
#> best solution in 343 iterations
#> Variable 3
#> best solution in 42 iterations
#> Variable 4
#> reached maximum of 16384 iterations
#> Variable 5
#> reached maximum of 16384 iterations
#> Variable 6
#> best solution in 1230 iterations
#>
#> Arranging data to match correlations
#>
#> Successfully generated correlated variables
### behavioural intention
intent <- lfast(n, mean = 4.0, sd = 3, lowerbound = 0, upperbound = 10) |>
data.frame()
#> best solution in 3059 iterations
names(intent) <- "int"
check properties of item dataframes
## Attitude #1
A1_moments <- data.frame(
means = apply(Att_1, 2, mean) |> round(2),
sds = apply(Att_1, 2, sd) |> round(2)
) |> t()
### Attitude #1 moments
A1_moments
#> [,1] [,2] [,3] [,4]
#> means 2.50 2.50 3.00 3.50
#> sds 0.75 0.85 0.85 0.75
### Attitude #1 correlations
cor(Att_1) |> round(2)
#> [,1] [,2] [,3] [,4]
#> [1,] 1.00 0.18 0.27 0.43
#> [2,] 0.18 1.00 0.63 0.71
#> [3,] 0.27 0.63 1.00 0.77
#> [4,] 0.43 0.71 0.77 1.00
### Attitude #1 cronbach's alpha
alpha(cor(Att_1)) |> round(3)
#> [1] 0.8
## Attitude #2
A2_moments <- data.frame(
means = apply(Att_2, 2, mean) |> round(2),
sds = apply(Att_2, 2, sd) |> round(2)
) |> t()
### Attitude #2 moments
A2_moments
#> [,1] [,2] [,3] [,4] [,5]
#> means 2.50 2.50 3.00 3.00 3.50
#> sds 0.75 0.85 0.75 0.85 0.75
### Attitude #2 correlations
cor(Att_2) |> round(2)
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 1.00 0.06 0.31 0.44 0.50
#> [2,] 0.06 1.00 0.57 0.63 0.65
#> [3,] 0.31 0.57 1.00 0.68 0.68
#> [4,] 0.44 0.63 0.68 1.00 0.80
#> [5,] 0.50 0.65 0.68 0.80 1.00
### Attitude #2 cronbach's alpha
alpha(cor(Att_2)) |> round(3)
#> [1] 0.85
## Attitude #3
A3_moments <- data.frame(
means = apply(Att_3, 2, mean) |> round(2),
sds = apply(Att_3, 2, sd) |> round(2)
) |> t()
### Attitude #3 moments
A3_moments
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> means 2.50 2.50 3.00 3 3.50 3.50
#> sds 0.75 0.85 0.85 1 0.75 0.85
### Attitude #3 correlations
cor(Att_3) |> round(2)
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] 1.00 0.33 0.36 0.42 0.47 0.48
#> [2,] 0.33 1.00 0.50 0.53 0.57 0.63
#> [3,] 0.36 0.50 1.00 0.65 0.72 0.78
#> [4,] 0.42 0.53 0.65 1.00 0.82 0.83
#> [5,] 0.47 0.57 0.72 0.82 1.00 0.85
#> [6,] 0.48 0.63 0.78 0.83 0.85 1.00
### Attitude #2 cronbach's alpha
alpha(cor(Att_3)) |> round(3)
#> [1] 0.898
## Behavioural Intention
intent_moments <- data.frame(
mean = apply(intent, 2, mean) |> round(3),
sd = apply(intent, 2, sd) |> round(3)
) |> t()
### Intention moments
intent_moments
#> int
#> mean 4.000
#> sd 2.999
apply the correlateScales() function
### apply correlateScales() function
my_correlated_scales <- correlateScales(
dataframes = data_frames,
scalecors = scale_cors
)
#> scalecors is positive-definite
#> New dataframe successfully created
plot the new correlated scale items
Check the properties of our derived dataframe
## data structure
str(my_correlated_scales)
#> 'data.frame': 128 obs. of 16 variables:
#> $ A1_1 : num 2 2 3 2 5 2 2 2 2 2 ...
#> $ A1_2 : num 4 3 1 2 3 3 4 2 3 2 ...
#> $ A1_3 : num 4 2 2 3 4 4 4 2 4 3 ...
#> $ A1_4 : num 4 3 3 3 4 4 4 3 4 3 ...
#> $ A2_1 : num 1 2 2 2 4 4 4 2 3 2 ...
#> $ A2_2 : num 2 2 1 3 3 4 2 1 2 2 ...
#> $ A2_3 : num 2 2 3 2 4 3 3 2 3 3 ...
#> $ A2_4 : num 2 3 2 3 3 4 4 2 3 3 ...
#> $ A2_5 : num 2 3 3 3 4 5 4 2 4 3 ...
#> $ A3_1 : num 4 2 2 2 4 3 2 3 4 2 ...
#> $ A3_2 : num 3 1 3 3 2 3 1 3 4 2 ...
#> $ A3_3 : num 4 3 4 2 3 3 2 3 5 2 ...
#> $ A3_4 : num 4 3 4 1 4 3 3 3 5 2 ...
#> $ A3_5 : num 4 3 4 2 4 4 3 3 5 3 ...
#> $ A3_6 : num 4 3 4 2 4 4 3 4 5 2 ...
#> $ Int_1: num 9 3 0 5 2 3 4 0 3 6 ...
## eigenvalues of dataframe correlations
Cor_Correlated_Scales <- cor(my_correlated_scales)
eigenvalues(cormatrix = Cor_Correlated_Scales, scree = TRUE) |> round(2)
#> Cor_Correlated_Scales is positive-definite
#> [1] 7.10 2.29 1.13 1.01 0.84 0.73 0.58 0.51 0.41 0.34 0.32 0.22 0.16 0.14 0.13
#> [16] 0.10
#### Eigenvalues of predictor variable items only
Cor_Attitude_items <- cor(my_correlated_scales[, -16])
eigenvalues(cormatrix = Cor_Attitude_items, scree = TRUE) |> round(2)
#> Cor_Attitude_items is positive-definite
#> [1] 6.94 2.26 1.03 0.86 0.79 0.68 0.56 0.44 0.34 0.34 0.22 0.17 0.15 0.13 0.10
Helper functions
likertMakeR() includes two additional functions that may be of help when examining parameters and output.
alpha() calculates Cronbach’s Alpha from a given correlation matrix or a given dataframe
eigenvalues() calculates eigenvalues of a correlation matrix, a report on whether the correlation matrix is positive definite, and produces an optional scree plot.
alpha()
alpha() accepts, as input, either a correlation matrix or a dataframe. If both are submitted, then the correlation matrix is used by default, with a message to that effect.
alpha() examples
## define parameters
df <- data.frame(
V1 = c(4, 2, 4, 3, 2, 2, 2, 1),
V2 = c(3, 1, 3, 4, 4, 3, 2, 3),
V3 = c(4, 1, 3, 5, 4, 1, 4, 2),
V4 = c(4, 3, 4, 5, 3, 3, 3, 3)
)
corMat <- matrix(
c(
1.00, 0.35, 0.45, 0.75,
0.35, 1.00, 0.65, 0.55,
0.45, 0.65, 1.00, 0.65,
0.75, 0.55, 0.65, 1.00
),
nrow = 4, ncol = 4
)
## apply function examples
alpha(cormatrix = corMat)
#> [1] 0.8395062
alpha(data = df)
#> [1] 0.8026658
alpha(NULL, df)
#> [1] 0.8026658
alpha(corMat, df)
#> Alert:
#> Both cormatrix and data present.
#>
#> Using cormatrix by default.
#> [1] 0.8395062
eigenvalues()
eigenvalues() calculates eigenvalues of a correlation matrix, reports on whether the matrix is positive-definite, and optionally produces a scree plot.
eigenvalues() examples
## define parameters
correlationMatrix <- matrix(
c(
1.00, 0.25, 0.35, 0.45,
0.25, 1.00, 0.70, 0.75,
0.35, 0.70, 1.00, 0.85,
0.45, 0.75, 0.85, 1.00
),
nrow = 4, ncol = 4
)
## apply function
evals <- eigenvalues(cormatrix = correlationMatrix)
#> correlationMatrix is positive-definite
print(evals)
#> [1] 2.7484991 0.8122627 0.3048151 0.1344231
eigenvalues() function with optional scree plot
evals <- eigenvalues(correlationMatrix, 1)
#> correlationMatrix is positive-definite
print(evals)
#> [1] 2.7484991 0.8122627 0.3048151 0.1344231
Alternative methods & packages
LikertMakeR is intended for synthesising & correlating rating-scale data with means, standard deviations, and correlations as close as possible to predefined parameters. If you don’t need your data to be close to exact, then other options may be faster or more flexible.
Different approaches include:
sampling from a truncated normal distribution
sampling with a predetermined probability distribution
marginal model specification
sampling from a truncated normal distribution
Data are sampled from a normal distribution, and then truncated to suit the rating-scale boundaries, and rounded to set discrete values as we see in rating scales.
See Heinz (2021) for an excellent and short example using the following packages:
See also the rLikert() function from the excellent latent2likert package, Lalovic (2024), for an approach using optimal discretization and skew-normal distribution. latent2likert() converts continuous latent variables into ordinal categories to generate Likert scale item responses.
sampling with a predetermined probability distribution
- the following code will generate a vector of values with approximately the given probabilities. Good for simulating a single item.
marginal model specification
Marginal model specification extends the idea of a predefined probability distribution to multivariate and correlated dataframes.
SimMultiCorrData: Simulation of Correlated Data with Multiple Variable Types on CRAN.
lsasim: Functions to Facilitate the Simulation of Large Scale Assessment Data on CRAN. See Matta et al. (2018)
SimCorMultRes: Simulates Correlated Multinomial Responses on CRAN. See Touloumis (2016)
covsim: VITA, IG and PLSIM Simulation for Given Covariance and Marginals on CRAN. See Grønneberg et al. (2022)
Factor Models: Classical Test Theory (CTT)
The psych
package has several excellent functions for simulating rating-scale
data based on factor loadings.
These focus on factor and item
correlations rather than item moments.
Highly recommended.
psych::sim.item Generate simulated data structures for circumplex, spherical, or simple structure
psych::sim.congeneric Simulate a congeneric data set with or without minor factors See Revelle (in prep)
Also:
simsem has many functions for simulating and testing data for application in Structural Equation modelling. See examples at https://simsem.org/
General data simulation
simpr provides a general, simple, and tidyverse-friendly framework for generating simulated data, fitting models on simulations, and tidying model results.
References
D’Alessandro, S., H. Winzar, B. Lowe, Ba.J. Babin, W. Zikmund (2020). Marketing Research 5ed, Cengage Australia. https://cengage.com.au/sem121/marketing-research-5th-edition-dalessandro-babin-zikmund
Grønneberg, S., Foldnes, N., & Marcoulides, K. M. (2022). covsim: An R Package for Simulating Non-Normal Data for Structural Equation Models Using Copulas. Journal of Statistical Software, 102(1), 1–45. doi:10.18637/jss.v102.i03
Heinz, A. (2021), Simulating Correlated Likert-Scale Data In R: 3 Simple Steps (blog post) https://glaswasser.github.io/simulating-correlated-likert-scale-data/
Lalovic M (2024). latent2likert: Converting Latent Variables into Likert Scale Responses. R package version 1.2.2, https://latent2likert.lalovic.io/.
Matta, T.H., Rutkowski, L., Rutkowski, D. & Liaw, Y.L. (2018), lsasim: an R package for simulating large-scale assessment data. Large-scale Assessments in Education 6, 15. doi:10.1186/s40536-018-0068-8
Pornprasertmanit, S., Miller, P., & Schoemann, A. (2021). simsem: R package for simulated structural equation modeling https://simsem.org/
Revelle, W. (in prep) An introduction to psychometric theory with applications in R. Springer. (working draft available at https://personality-project.org/r/book/ )
Touloumis, A. (2016), Simulating Correlated Binary and Multinomial Responses under Marginal Model Specification: The SimCorMultRes Package, The R Journal 8:2, 79-91. doi:10.32614/RJ-2016-034
Winzar, H. (2020). LikertMakeR: Synthesise and correlate Likert scale and related rating-scale data with predefined first and second moments. CRAN: <doi: 10.32614/CRAN.package.LikertMakeR>